Forecasting using a large panel of predictors: Bayesian model averaging and principal components regression

نویسنده

  • Rachida Ouysse
چکیده

We study the out-of-sample forecast performance of two alternative methods for dealing with dimensionality: Bayesian model Averaging (BMA) and principal components regression (PCR). We conduct a different out-of-sample investigation in which the predictors are chosen jointly for both output and inflation using Bayesian variable selection in each out-of-sample recursion using information available at the time of the forecast. This framework implies stochastic nonparametric time-varying reduced form which offers flexibility in capturing structural changes and instabilities of unknown forms. While the competing forecasts are highly correlated, PCR performed marginally better than BMA in terms of mean-squared forecast error. However, this marginal edge in the average global out-of-sample performance hides important changes in the local forecasting power. An analysis of the Theil index indicates that the loss of performance of PCR is due mainly to its exuberant biases in matching the mean of the two series especially the inflation series. BMA forecasts series matches the first and second moments of the GDP and inflation series very well with practically zero biases and very low volatility. The fluctuation statistic that measures the relative local performance shows that BMA performed consistently better than PCR and the naive random walk benchmark over the period prior to 1985. Thereafter, the performance of both BMA and PCR was relatively modest compared to the naive benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Shrinkage Methods for Forecasting Using Many Predictors

This article provides a simple shrinkage representation that describes the operational characteristics of various forecasting methods designed for a large number of orthogonal predictors (such as principal components). These methods include pretest methods, Bayesian model averaging, empirical Bayes, and bagging. We compare empirically forecasts from these methods with dynamic factor model (DFM)...

متن کامل

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

Forecasting Ination Using Dynamic Model Averaging

We forecast quarterly US in‡ation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We …nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and...

متن کامل

Revisiting useful approaches to data-rich macroeconomic forecasting

We compare a number of data-rich prediction methods that are widely used in macroeconomic forecasting with a lesser known alternative: partial least squares (PLS) regression. In this method, linear, orthogonal combinations of a large number of predictor variables are constructed such that the covariance between a target variable and these common components is maximized. We show theoretically th...

متن کامل

Time series forecasting by principal covariate regression

This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many predictors consist of two steps, where the large set of predictors is first summarized by means of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013